Journal of Organometallic Chemistry, 259 (1983) 313-320 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ENTHALPIES OF FORMATION OF DECACARBONYLDIRHENIUM AND SOME PENTACARBONYLRHENIUM DERIVATIVES

GHASSAN AL-TAKHIN, JOSEPH A. CONNOR^{*} and HENRY A. SKINNER Chemistry Department, Manchester University, Manchester M13 9PL (Great Britain) (Received July 21st, 1983)

Summary

Microcalorimetric measurements were made at elevated temperatures to determine the enthalpies of sublimation, thermal decomposition and bromination of $[\text{Re}_2(\text{CO})_{10}]$ and of $[\text{Re}(\text{CO})_5\text{X}]$ (X = CH₃, Cl, Br), from which the standard enthalpies of formation, ΔH_f° (c), ΔH_f° (g), were derived as follows (values in kJ mol⁻¹): $[\text{Re}_2(\text{CO})_{10}] - (1660 \pm 11)$, $-(1559 \pm 11)$; $[\text{Re}(\text{CO})_5\text{CH}_3] - (830 \pm 6)$, $-(760 \pm 6)$; $[\text{Re}(\text{CO})_5\text{Cl}] - (986 \pm 18)$, $-(877 \pm 18)$; $[\text{Re}(\text{CO})_5\text{Br}] - (950 \pm 8)$, $-(858 \pm 8)$. The bond dissociation enthalpies $D(X-\text{Re}(\text{CO})_5)$ are derived as 220 (X = CH₃), 314 (X = Cl), 283 (X = Br) kJ mol⁻¹ relative to the value 187 kJ mol⁻¹ for D(Re-Re) in $[\text{Re}_2(\text{CO})_{10}]$.

Introduction

Enthalpies of formation of decacarbonyldirhenium [1] and of methylpentacarbonylrhenium [2] have been obtained from measurements of enthalpies of iodination at elevated temperatures, forming ReI₃ as the metal-containing product. The derived heats of formation depend, however, on an estimated value for the enthalpy of formation of ReI₃(c), which was obtained by extrapolation from known values for ReCl₃(c) and ReBr₃(c) [3]. Following the adaption of the high temperature microcalorimetric technique by Zafarani-Moattar [4] to measurements of the heats of bromination of metal carbonyls, we have examined the bromination of some pentacarbonylrhenium derivatives, to obtain enthalpy values which relate directly to the known value for ΔH_f° [ReBr₃,c]. Measurements by the vacuum sublimation microcalorimetric technique [5] have also been made on these compounds to obtain enthalpies of sublimation, and enthalpies of formation of the gaseous molecules.

Experimental

Calorimeter. The Calvet twin-cell microcalorimeter (Setaram) and the dropcalorimetric technique have already been described [6,7].

Materials. Decacarbonyldirhenium (Strem) was resublimed prior to use. $[Re(CO)_{S}CH_{3}]$ was prepared as described by Hieber, Braun and Beck [8]; [Re(CO), Cl] and [Re(CO), Br] were prepared by a standard method [9]. The purity of these materials was established by microanalysis and spectroscopy (infrared, mass).

Auxiliary data. The following auxiliary heat of formation data (kJ mol⁻¹) were used in evaluating the calorimetric results:

 $CO(g) = -(110.524 \pm 0.17) [10]; Br_2(g) = (30.907 \pm 0.11) [10];$ $I_2(g) = (62.42 \pm 0.08) [10]; \text{ ReCl}_3(c) = -(272.4 \pm 4.2) [3];$ $\operatorname{ReBr}_{3}(c) = -(175.7 \pm 5) [3]; \operatorname{CH}_{3}\operatorname{Br}(g) = -(37.2 \pm 0.9) [11];$ $\operatorname{Re}(g) = (775.7 \pm 6.3) [3]; \operatorname{CH}_{3}(g) = (146.2 \pm 1.0) [12,13];$ $Cl(g) = (121.30 \pm 0.01) [10]; Br(g) = (111.84 \pm 0.12) [10].$

The enthalpies of reaction, ΔH^T , measured at elevated temperatures, T, were adjusted to 298 K using heat content data, $(H_T - H_{298})$, for CO(g), Br₂(g), I₂(g) and CH₃Br(g) from Stull, Westrum and Sinke [14]. The $(H_T - H_{298})$ values for ReCl₃(c) and $\text{ReBr}_3(c)$ were estimated, assuming these to be of similar magnitude to the known values for TaCl₃, TaBr₃, ZrCl₃ and ZrBr₃, as given by Barin and Knacke [15]; $(H_T - H_{298})$ for Re(c) was taken from Barin and Knacke [15].

Results

Enthalpies of sublimation of crystalline samples of $[Re_2(CO)_{10}]$, $[Re(CO)_5CH_3]$, [Re(CO), Cl] and [Re(CO), Br] were measured by the vacuum-sublimation microcalorimetric technique [5]. The results are summarized in Table 1, where ΔH^T refers

Compound	Т (К)	Mass (mg)	$\frac{\Delta H^T}{(\text{kJ mol}^{-1})}$	$(H_{7} - H_{298})$ (kJ mol ⁻¹)	$\frac{\Delta H_{sub}^{298}}{(\text{kJ mol}^{-1})}$	mean ΔH_{sub}^{298} (kJ mol ⁻¹)
Cr(CO) ₆ ^a	408	2.151	91.0	22.1	68.9	70.0
	408	2.543	93.3	22.1	71.2	70.0
$[Re_2(CO)_{10}]$	386	2.700	132.4	30.5	101.9	
	386	2.383	129.7	30.5	99.2	100.9
	397	2.510	135.8	34.3	101.5	
[Re(CO)5CH3]	386	2.000	84.2	17.8	66.4	
	386	2.278	88.1	17.8	70.3	70.0
	397	2.181	92.9	20.0	72.9	70.0
	397	2.084	90.4	20.0	70.4	
[Re(CO) ₅ Br]	401	4.289	109.1	19.9	89.2	
	381	2.805	107.8	16.1	91.7	
	366	5.875	107.5	13.2	94.3	92.1
	363	2.240	106.2	12.6	93.6	
	358	4.000	103.6	11.7	91.9	
[Re(CO) ₅ Cl]	386	2.803	128.8	17.2	111.6	
	386	2.252	125.9	17.2	108.7	110.0
	397	2.204	131.8	19.3	112.5	110.9
	397	2.001	130.0	19.3	110.7	

TABLE 1

" Test substance.

T	Mass	ΔH_2^T	$\overline{\Sigma(H_T - H_{298})}$	ΔH_2^{298}
(K)	(mg)	$(kJ mol^{-1})$	(kJ mol ⁻ ')	(kJ mol ⁻ ')
529	2.141	199.5	88.6	110.9
538	2.805	193.1	92.2	100.9
538	3.663	206.4	92.2	114.2
538	3.415	219.5	92.2	127.3
538	2.141	194.7	92.2	102.5

TABLE 2 BROMINATION OF DECACARBONYLDIRHENIUM

to the measured enthalpy change for the cell-process

$$[(\mathrm{CO})_{5}\mathrm{Re}\,\mathrm{R})](\mathrm{c},\,298) \rightarrow [(\mathrm{CO})_{5}\mathrm{Re}\,\mathrm{R}](\mathrm{g},\,T) \tag{1}$$

 ΔH_{sub}^{298} values were obtained from ΔH^T by subtraction of the heat content $(H_T - H_{298})$ of the vapour; these corrections were estimated using an approximation which treats the ligands (R + 5CO) as separate entities, and adding their individual contributions. For example, for [Re(CO)₅CH₃], $[H_T - H_{298}] = \Sigma (H_T - H_{298})$ for CH₃, 5CO [14] + Re(c) [15]. This procedure gives a reasonably good fit for the hexacarbonyls of chromium, molybdenum and tungsten, for which experimental data are available for comparison [16].

Decacarbonyldirhenium, $[Re_2(CO)_{10}]$

TABLE 3

Bromination measurements were made by dropping samples into excess Br_2/N_2 gas in the hot reaction vessel at temperatures in the range 530-540 K. Reaction was rapid, giving a dark almost black powder of ReBr₃, and traces of a blue deposit (probably ReBr₅) near the exit from the reaction tube. The measured heats of reaction, ΔH_2^T , referring to the cell-reaction:

$$\left[\operatorname{Re}_{2}(\operatorname{CO})_{10}\right](c, 298) + 3\operatorname{Br}_{2}(g, T) \to 2\operatorname{ReBr}_{3}(c, T) + 10\operatorname{CO}(g, T)$$
(2)

are listed in Table 2. The mean value, $\Delta H_2^{298} = (111.2 \pm 10) \text{ kJ mol}^{-1}$ corresponds to ΔH_f° [Re₂(CO)₁₀,c] = $-(1660.6 \pm 11) \text{ kJ mol}^{-1}$, in fair agreement with the earlier value of $-(1652.7 \pm 21) \text{ kJ mol}^{-1}$ from iodination [1], and with $\sim -1666 \text{ kJ mol}^{-1}$ as reported [3] from measurements of the heat of combustion by Chernova, Sheiman, Rabinovitch and Syrkin [17].

Samples of $[\text{Re}_2(\text{CO})_{10}]$ dropped into the N₂-filled hot-zone at 626 K decomposed readily, forming a bright metallic mirror deposit on the walls of the reaction vessel. The measured enthalpies of thermal decomposition, ΔH_3^T , refer to the

<u>Т</u> (К)	Mass (mg)	$\Delta H_3^T $ (kJ mol ⁻¹)	$\frac{\Sigma(H_T - H_{298})}{(\text{kJ mol}^{-1})}$	$\frac{\Delta H_3^{298}}{(\text{kJ mol}^{-1})}$
626	3.380	650.8	114.8	536.0
626	4.032	627.6	114.8	512.8
626	3.460	634.4	114.8	519.6

THERMAL DECOMPOSITION OF DECACARBONYLDIRHENIUM

<u>Т</u> (К)	Mass (mg)	$\frac{\Delta H_4^T}{(\text{kJ mol}^{-1})}$	$\frac{\sum(H_T - H_{298})}{(\text{kJ mol}^{-1})}$	ΔH_4^{298} (kJ mol ⁻¹)
488	2.366	43.6	42.3	1.3
488	2.231	47.0	42.3	4.7
488	1.600	43.7	42.3	1.4

BROMINATION OF METHYLPENTACARBONYLRHENIUM

process:

$$[\text{Re}_2(\text{CO})_{10}](c, 298) \rightarrow \text{Re}(c, T) + 10\text{CO}(g, T)$$
 (3)

and include 'spurious' exothermic effects arising from adsorption of CO on the metal deposit, for which corrections can rarely be made. Typical results are given in Table 3. The mean $\Delta H_3^{298} = (522.9 \pm 14)$ kJ mol⁻¹ leads to $\Delta H_f^o[\text{Re}_2(\text{CO})_{10}, \text{c}] = -(1628.3 \pm 14)$ kJ mol⁻¹, and (as expected) is numerically less exothermic than from bromination or iodination studies.

Methylpentacarbonylrhenium, $[Re(CO)_5CH_3]$

The bromination of $[Re(CO)_5CH_3]$ was studied at 488 K; reaction was rapid, giving a dark residue of ReBr₃, with traces of the more volatile, blue pentabromide. The measured reaction heats, ΔH_4^T , referring to the cell-reaction:

$$[\text{Re}(\text{CO})_5\text{CH}_3](c, 298) + 2\text{Br}_2(g, T) \to \text{CH}_3\text{Br}(g, T) + 5\text{CO}(g, T) + \text{Re}\text{Br}_3(c, T)$$
(4)

are listed in Table 4. Combined with given auxiliary data, the mean $\Delta H_4^{298} = 2.5 \pm 2.4$ kJ mol⁻¹ leads to ΔH_f° [Re(CO)₅CH₃,c] = $-(829.7 \pm 6)$ kJ mol⁻¹, in good agreement with that obtained previously [2] from iodination studies.

Thermal decomposition in N₂-gas was studied at 626 K. The metal deposited as a mirror on the walls of the reaction vessel, but no attempt was made to identify the hydrocarbon products of decomposition. The measured enthalpy of decomposition, $\Delta H^{626} \sim 280 \text{ kJ mol}^{-1}$, reduces to $\sim 210 \text{ kJ mol}^{-1}$ at 298 K, and leads to $\Delta H_f^{\circ}[\text{Re(CO)}_5\text{CH}_3,\text{c}] \sim -805 \text{ kJ mol}^{-1}$, assuming that ethane is the hydrocarbon product formed. This is again less than from bromination, possibly due to the reduction of ΔH^{626} from its true value from absorption of CO on the metal deposit.

TABLE 5 BROMINATION OF BROMOPENTACARBONYLRHENIUM

T (K)	Mass (mg)	$\frac{\Delta H_5^{\tilde{T}}}{(\text{kJ mol}^{-1})}$	$\frac{\sum (H_T - H_{298})}{(\text{kJ mol}^{-1})}$	ΔH_5^{298} (kJ mol ⁻¹)
460	2.397	223.0	33.9	189.1
460	1.975	231.7	33.9	197.8
538	3.105	236.2	50.5	185.7
538	3.395	246.7	50.5	196.2
538	1.801	232.9	50.5	182.4

TABLE 4

<u>Т</u> (К)	Mass (mg)	$\frac{\Delta H_6^T}{(\text{kJ mol}^{-1})}$	$\sum (H_T - H_{298})$ (kJ mol ⁻¹)	$\frac{\Delta H_6^{298}}{(\text{kJ mol}^{-1})}$
626	3.070	383.5	64.2	319.3
626	3.307	407.8	64.2	343.6
626	2.535	422.6	64.2	358.4

THERMAL DECOMPOSITION OF BROMOPENTACARBONYLRHENIUM

Bromopentacarbonylrhenium, [Re(CO)₅Br]

Bromination of $[\text{Re}(\text{CO})_5\text{Br}]$ was studied over the temperature range 460-540 K and the results are summarised in Table 5, where ΔH_5^T refers to the cell-reaction:

$$[\operatorname{Re}(\operatorname{CO})_{5}\operatorname{Br}](c, 298) + \operatorname{Br}_{2}(g, T) \to \operatorname{Re}\operatorname{Br}_{3}(c, T) + 5\operatorname{CO}(g, T)$$
(5)

The mean value of $\Delta H_5^{298} = (190.2 \pm 5)$ kJ mol⁻¹ corresponds to ΔH_f^o [Re-(CO)₅Br,c] = $-(949.4 \pm 8)$ kJ mol⁻¹.

Measurements were also made of thermal decomposition of $[Re(CO)_5Br]$ at 626 K, which gave a deposit on the walls of the reaction vessel, presumably of the monobromide, ReBr:

$$[\operatorname{Re}(\operatorname{CO})_{5}\operatorname{Br}](c, 298) \to \operatorname{Re}\operatorname{Br}(c, T) + 5\operatorname{CO}(g, T)$$
(6)

Measured values of ΔH_6^T are given in Table 6. The enthalpy of formation of ReBr is not known: the simple assumption that $\Delta H_f^{\circ}[\text{ReBr,c}] \sim \frac{1}{3}\Delta H_f^{\circ}[\text{ReBr}_3,c]$, taken with the mean value $\Delta H_6^{298} = (340.4 \pm 23) \text{ kJ mol}^{-1}$ leads to $\Delta H_f^{\circ}[\text{Re(CO)}_5\text{Br,c}] \sim -(952 \pm 23) \text{ kJ mol}^{-1}$ which is in fair agreement with the value derived from direct bromination.

Chloropentacarbonylrhenium

The bromination of $[\text{Re}(\text{CO})_5\text{Cl}]$ was studied over the temperature range 488-538 K. The measured enthalpies of reaction, ΔH_7^T , relating to the process

$$\left[\operatorname{Re}(\operatorname{CO})_{5}\operatorname{Cl}\right](c, 298) + \operatorname{Br}_{2}(g, T) \to \operatorname{Re}\operatorname{Br}_{2}\operatorname{Cl}(c, T) + 5\operatorname{CO}(g, T)$$

$$\tag{7}$$

are given in Table 7. The mean value, $\Delta H_7^{298} = (177.1 \pm 10) \text{ kJ mol}^{-1}$ leads to $\Delta H_6^{\circ}[\text{Re(CO)}_5\text{Cl},\text{c}] = \{-(760.7 \pm 10) + \Delta H_6^{\circ}[\text{ReBr}_2\text{Cl},\text{c}]\} \text{ kJ mol}^{-1}$.

No value is yet available for the enthalpy of formation of the mixed trihalide ReBr_2Cl . The crystal structures of ReX_3 (X = Cl, Br) show that these molecules

TABLE 7

BROMINATION OF CHLOROPENTACARBONYLRHENIUM

T (K)	Mass (mg)	$\frac{\Delta H_7^T}{(\text{kJ mol}^{-1})}$	$\frac{\Sigma(H_T - H_{298})}{(\text{kJ mol}^{-1})}$	$\frac{\Delta H_7^{298}}{(\text{kJ mol}^{-1})}$
488	2.008	209.5	39.8	169.7
488	2.176	213.6	39.8	173.8
538	2.921	240.7	50.3	190.4
538	2.609	215.9	50.3	165.6
538	3.161	236.2	50.3	185.9

Halide	$\frac{\Delta H_f^{\circ}(g)}{(k \text{J mol}^{-1})}$	$\frac{\Delta H_{\rm atom}^{298}}{(\rm kJ\ mol^{-1})}$	Bonds
ReCl,	- 306.7 ± 11 [21]	1689 ± 13	5(ReCl)
ReBr.	-193.7 ± 10 [22]	1529 ± 10	5(ReBr)
Re ₃ Cl ₉	-600 ± 11	4019 ± 16	$6(ReCl) + 6(\mu_2 - ClRe) + 3(Re - Re)$
Re ₃ Br ₉	-318 ± 20	2981 ± 23	$6(ReBr) + 6(\mu_2 - BrRe) + 3(Re - Re)$

ENTHALPIES OF ATOMIZATION OF RHENIUM HALIDES

contain Re₃ clusters in Re₃X₉ units [18]. These molecules are also trimeric in the vapour phase. Enthalpies of formation of [Re₃Cl₉,g] and [Re₃Br₉,g] can be derived from the measured enthalpies of sublimation [19,20] of ReCl₃ and ReBr₃. Values of ΔH_{f}° [ReCl₅,g] [3,21] and ΔH_{f}° [ReBr₅,g] [22] are also available. These data are presented in Table 8 together with the enthalpies of atomization, ΔH_{atom}^{298} , of these rhenium halides.

In the ReX₅ molecules, all the Re-X bonds are 'terminal', whereas in [Re₃X₉], there are six terminal Re-X bonds and six 'bridging', μ_2 -XRe bonds in the [Re₃X₃] cluster. The mean bond enthalpy contributions of the terminal bonds are \overline{D} (Re-Cl) = (337.8 ± 3) kJ mol⁻¹ in ReCl₅ and \overline{D} (Re-Br) = (305.8 ± 2.5) kJ mol⁻¹ in ReBr₅; transfer of these values to [Re₃Cl₉] and [Re₃Br₉] then leaves a contribution of 1992.2 kJ mol⁻¹ from the [Re₃Cl₃] cluster, and of 1146.2 kJ mol⁻¹ from the [Re₃Br₃] cluster. In the 'mixed' halide, [Re₃Cl₃Br₆], the most stable structure is calculated to have $\Delta H_{atom} = 3827$ kJ mol⁻¹, and is based on the [Re₃Cl₃] cluster with six terminal ReBr bonds. The calculated ΔH_{atom} value corresponds to ΔH_{1}^{c} [Re₃Br₆Cl₃,g] = -465 kJ mol⁻¹, and since the enthalpy of the sublimation process

$$3[\operatorname{ReBr}_{2}\operatorname{Cl},c] \rightarrow [\operatorname{Re}_{3}\operatorname{Br}_{6}\operatorname{Cl}_{3},g]$$
(8)

should not differ significantly from that for $3[\text{ReBr}_3,c]$, $(\Delta H_8 \sim 209 \text{ kJ})$, the estimated $\Delta H_f^\circ[\text{ReBr}_2\text{Cl},c] = -(225 \pm 15) \text{ kJ mol}^{-1}$. This compares with $-(208 \pm 5) \text{ kJ} \text{ mol}^{-1}$ on the basis of the simple assumption that $\Delta H_f^\circ[\text{ReBr}_2\text{Cl},c] \sim 1/3\Delta H_f^\circ[\text{ReCl}_3,c] + 2/3 \Delta H_f^\circ[\text{ReBr}_3,c]$. Combined with $\Delta H_7^{298} = (177.1 \pm 10) \text{ kJ mol}^{-1}$, the estimated $\Delta H_f^\circ[\text{ReBr}_2\text{Cl},c] = -(225 \pm 15) \text{ kJ mol}^{-1}$ leads to $-(985.7 \pm 18) \text{ kJ} \text{ mol}^{-1}$ for $\Delta H_f^\circ[\text{Re(CO)}_5\text{Cl},c]$.

Thermal decomposition studies on [Re(CO)₅Cl] were made at 626 K, and results are given in Table 9, where ΔH_9^T refers to

$$[\operatorname{Re}(\operatorname{CO})_{5}\operatorname{Cl}](c, 298) \to \operatorname{Re}\operatorname{Cl}(c, T) + 5\operatorname{CO}(g, T)$$
(9)

Т (К)	Mass (mg)	$\frac{\Delta H_9^T}{(\text{kJ mol}^{-1})}$	$\frac{\sum (H_T - H_{298})}{(\text{kJ mol}^{-1})}$	ΔH_{9}^{298} (kJ mol ⁻¹)
626	3.088	401.6	64.2	337.4
626	3.351	394.5	64.2	330.3
626	2.576	392.5	64.2	328.2

THERMAL DECOMPOSITION OF CHLOROPENTACARBONYLRHENIUM

TABLE 9

318

Compound	$\frac{\Delta H_{\rm f}^{\rm o}({\rm c})}{({\rm kJ}\;{\rm mol}^{-1})}$	$\frac{\Delta H_{\rm sub}^{\circ}}{(\rm kJ\ mol^{-1})}$	$\frac{\Delta H_{\rm f}^{\circ}({\rm g})}{({\rm kJ}\;{\rm mol}^{-1})}$	$\frac{D[R-Re(CO)_5]}{(kJ \text{ mol}^{-1})}$
$\overline{(OC)_5 \text{Re-Re}(CO)_5}$	-1660 ± 11	101 ± 2	-1559 ± 11	187
$CH_3 - Re(CO)_5$	-830 ± 6	70 ± 2	-760 ± 6	220 ± 8
Br-Re(CO) ₅	-950 ± 8	92 ± 2	-858 ± 8	283 ± 11
Cl-Re(CO),	-986 ± 18	111 ± 2	-877 ± 18	314 ± 19

 TABLE 10

 BOND DISSOCIATION ENTHALPIES, D(R-Re(CO)₅)

The enthalpy of formation of ReCl is not known. If we assume that it approximates to $1/3 \Delta H_f^{\circ}[\text{ReCl}_{3},\text{c}]$, the mean $\Delta H_9^{298} = (332 \pm 6) \text{ kJ mol}^{-1}$ then leads to a value of ca. -975 kJ mol^{-1} for $\Delta H_f^{\circ}[\text{Re(CO)}_5\text{Cl},\text{c}]$.

Discussion

The crucial problem in interpretation of these thermochemical results is provided by the decision on the value to be assigned to the dissociation energy of the Re-Re bond in $[\text{Re}_2(\text{CO})_{10}]$. The ionization potential of $[\text{Re}_2(\text{CO})_{10}]$ (8.36 ± 0.03 eV) is used as the basis for an estimate of $IP[(\text{Re}(\text{CO})_5)]$ 8.40 eV. The measured value of $AP[(\text{Re}(\text{CO})_5^+)]$ 10.34 eV, so that D(Re-Re) in $[\text{Re}_2(\text{CO})_{10}] = (1.94 \pm 0.05)$ eV (187 ± 5 kJ mol⁻¹) [23]. Measurement of the kinetics of reaction between $\text{Re}_2(\text{CO})_{10}$ and PPh₃ in decalin solution were interpreted [24] in terms of initial dissociation of the metal-metal bond and subsequent substitution, so that the activation energy was equated with the metal-metal bond energy and $D(\text{Re}-\text{Re}) = (165.5 \pm 0.8)$ kJ mol⁻¹. Recently, it has been shown that this substitution proceeds by a CO dissociation mechanism without detectable rupture of the metal-metal bond [25]. This is then consistent with the higher value of D(Re-Re) obtained from electron impact studies.

On this basis and with $\Delta H_f^{\circ}[\operatorname{Re}_2(\operatorname{CO})_{10},g] = -1559.7 \pm 11 \text{ kJ mol}^{-1}$, we calculate $\Delta H_f^{\circ}[\operatorname{Re}(\operatorname{CO})_5,g] = -686.4 \pm 6 \text{ kJ mol}^{-1}$, and the bond dissociation energies shown in Table 10. The values of $D(\operatorname{R-Re}(\operatorname{CO})_5)$ may be compared with those obtained for analogous manganese complexes [26]. The trend $D(\operatorname{M-Cl}) > D(\operatorname{M-Br}) > D(\operatorname{M-CH}_3) > D(\operatorname{M-M})$ is the same for both metals (M = Mn, Re) but the changes are larger for manganese than for rhenium, irrespective of the value chosen for enthalpy of formation of the [M(CO)_5] radical [27].

Acknowledgement

We thank the SERC for support of this work, and Dr. R. Carson for the preparation of some samples.

References

- 1 J.A. Connor, H.A. Skinner and Y. Virmani, Faraday Symposia of the Chemical Society, 8 (1973) 18.
- 2 D.L.S. Brown, J.A. Connor and H.A. Skinner, J. Organomet. Chem., 81 (1974) 403.
- 3 V.P. Glyshko and V.A. Medvedev, Thermochemical Constants of Chemical Compounds, Vol. 7, (1974), Akad. Nauk. SSSR.

- 4 M.T. Zafarani-Moattar, Ph.D. Thesis, Manchester University (1979).
- 5 F.A. Adedeji, D.L.S. Brown, J.A. Connor, M.L. Leung, I.M. Paz Andrade and H.A. Skinner, J. Organomet. Chem., 97 (1975) 221.
- 6 J.A. Connor, Y. Virmani and H.A. Skinner, J. Chem. Soc., Faraday I, 68 (1972) 1754.
- 7 A.K. Baev, J.A. Connor, N.I. El-Saied and H.A. Skinner, J. Organomet. Chem., 213 (1981) 151.
- 8 W. Hieber, G. Braun and W. Beck, Chem. Ber., 93 (1960) 901.
- 9 K.J. Reimer and A. Shaver, Inorg. Synth., 19 (1979) 159; M.H. Quick and R.J. Angelici, Inorg. Synth., 19 (1979) 160.
- 10 CODATA Tables, J. Chem. Thermodynamics, 10 (1978) 903.
- 11 J.B. Pedley and J. Rylance, Sussex-NPL Computer Analysed Thermochemical Data, Univ. Sussex (1977).
- 12 W.A. Chupka, J. Chem. Phys., 48 (1968) 2337.
- 13 M.H. Baghal-Vayjooee, A.J. Colussi and S.W. Benson, Int. J. Chem. Kinetics, 11 (1979) 147.
- 14 D.R. Stull, E.F. Westrum Jr. and G.C. Sinke, The Chemical Thermodynamics of Organic Compounds, Wiley, New York, 1969.
- 15 I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin and Heidelberg, 1973.
- 16 G. Pilcher, M.J. Ware and D.A. Pittam, J. Less Common Metals, 42 (1975) 223.
- 17 V.I. Chernova, M.S. Sheiman, I.B. Rabinovich and V.G. Syrkin, Tr. Khim. Khim. Tekhol. (Gorki). 2 (1973) 43.
- 18 F.A. Cotton and J.T. Mague. Inorg. Chem., 3 (1964) 1402; F.A. Cotton, S.J. Lippard and J.T. Mague. Inorg. Chem., 4 (1965) 508.
- 19 A. Büchler, P.E. Blackburn and J.L. Stauffer, J. Phys. Chem., 70 (1966) 685.
- 20 R.W. Lins and R.J. Sime, High Temp. Chem., 5 (1973) 56.
- 21 J. Burgess, C.J.W. Fraser, I. Haigh and R.D. Peacock, J. Chem. Soc., Dalton Trans., (1973) 501.
- 22 K.V. Ovchinnikov, S.E. Logai and N.I. Kolbin, Zh. Obshch. Khim., 42 (1972) 1180.
- 23 G.A. Junk and H.J. Svec, J. Chem. Soc. A, (1970) 2102.
- 24 L.I.B. Haines and A.J. Poë, J. Chem. Soc. A, (1969) 2826.
- 25 A.M. Stolzenberg and E.L. Muetterties, J. Amer. Chem. Soc., 105 (1983) 822.
- 26 J.A. Connor, M.T. Zafarani-Moattar, J. Bickerton, N.I. El-Saied, S. Suradi, R. Carson, G. Al-Takhin and H.A. Skinner, Organometallics, 1 (1982) 1166.
- 27 N.J. Coville, A.M. Stolzenberg and E.L. Muetterties, J. Amer. Chem. Soc., 105 (1983) 2499.